Algebras, Automata and Logic for Languages of Labeled Birooted Trees
نویسنده
چکیده
In this paper, we study the languages of labeled finite birooted trees: Munn’s birooted trees extended with vertex labeling. We define a notion of finite state birooted tree automata that is shown to capture the class of languages that are upward closed w.r.t. the natural order and definable in Monadic Second Order Logic. Then, relying on the inverse monoid structure of labeled birooted trees, we derive a notion of recognizable languages by means of (adequate) premorphisms into finite (adequately) ordered monoids. This notion is shown to capture finite boolean combinations of languages as above. We also provide a simple encoding of finite (mono-rooted) labeled trees in an antichain of labeled birooted trees that shows that classical regular languages of finite (mono-rooted) trees are also recognized by such premorphisms and finite ordered monoids.
منابع مشابه
On labeled birooted tree languages: Algebras, automata and logic
With an aim to developing expressive language theoretical tools applicable to inverse semigroup languages, that is, subsets of inverse semigroups, this paper explores the language theory of finite labeled birooted trees: Munn’s birooted trees extended with vertex labeling. To this purpose, we define a notion of finite state birooted tree automata that simply extends finite state word automata s...
متن کاملWalking automata in the free inverse monoid
In this paper, we study languages of birooted trees or, following Scheiblich-Munn’s theorem, subsets of free inverse monoids. Extending the classical notion of rational languages with a projection operator that maps every set of birooted trees to the subset of its idempotent elements it is first shown that the hierarchy induced by the nesting depth of that projection operator simply correspond ...
متن کاملWalking Automata in Free Inverse Monoids
Walking automata, be they running over words, trees or even graphs, possibly extended with pebbles that can be dropped and lifted on vertices, have long been defined and studied in Computer Science. However, questions concerning walking automata are surprisingly complex to solve. In this paper, we study a generic notion of walking automata over graphs whose semantics naturally lays within inver...
متن کاملForest algebras
If in a transformation semigroup we assume that the set being acted upon has a semigroup structure, then the transformation semigroup can be used to recognize languages of unranked trees. This observation allows us to examine the relationship connecting languages of unranked trees with standard algebraic concepts such as aperiodicity, idempotency, commutativity and wreath product. In particular...
متن کاملTREE AUTOMATA BASED ON COMPLETE RESIDUATED LATTICE-VALUED LOGIC: REDUCTION ALGORITHM AND DECISION PROBLEMS
In this paper, at first we define the concepts of response function and accessible states of a complete residuated lattice-valued (for simplicity we write $mathcal{L}$-valued) tree automaton with a threshold $c.$ Then, related to these concepts, we prove some lemmas and theorems that are applied in considering some decision problems such as finiteness-value and emptiness-value of recognizable t...
متن کامل